Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 340821
Title Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels
Author(s) Kaper, T.; Talik, B.; Ettema, T.J.G.; Bos, H.; Maarel, M.J.E.C. van der; Dijkhuizen, L.
Source Applied and Environmental Microbiology 71 (2005)9. - ISSN 0099-2240 - p. 5098 - 5106.
DOI https://doi.org/10.1128/AEM.71.9.5098-5106.2005
Department(s) Microbiology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2005
Keyword(s) archaeon thermococcus-litoralis - alpha-amylase family - large cyclic glucans - potato d-enzyme - cyclodextrin-glycosyltransferase - hyperthermophilic archaeon - escherichia-coli - crystal-structure - disproportionating enzyme - pyrococcus-furiosus
Abstract Amylomaltases are 4-¿-glucanotransferases (EC 2.4.1.25) of glycoside hydrolase family 77 that transfer ¿-1,4-linked glucans to another acceptor, which can be the 4-OH group of an ¿-1,4-linked glucan or glucose. The amylomaltase-encoding gene (PAE1209) from the hyperthermophilic archaeon Pyrobaculum aerophilum IM2 was cloned and expressed in Escherichia coli, and the gene product (PyAMase) was characterized. PyAMase displays optimal activity at pH 6.7 and 95°C and is the most thermostable amylomaltase described to date. The thermostability of PyAMase was reduced in the presence of 2 mM dithiothreitol, which agreed with the identification of two possible cysteine disulfide bridges in a three-dimensional model of PyAMase. The kinetics for the disproportionation of malto-oligosaccharides, inhibition by acarbose, and binding mode of the substrates in the active site were determined. Acting on gelatinized food-grade potato starch, PyAMase produced a thermoreversible starch product with gelatin-like properties. This thermoreversible gel has potential applications in the food industry. This is the first report on an archaeal amylomaltase.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.