Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 342698
Title Last in, first out: the role of cofactor binding in flavodoxin folding
Author(s) Bollen, Y.J.M.; Nabuurs, S.M.; Berkel, W.J.H. van; Mierlo, C.P.M. van
Source Journal of Biological Chemistry 280 (2005)9. - ISSN 0021-9258 - p. 7836 - 7844.
DOI https://doi.org/10.1074/jbc.M412871200
Department(s) Biochemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2005
Keyword(s) desulfovibrio-desulfuricans flavodoxin - azotobacter-vinelandii apoflavodoxin - mononucleotide cofactor binding - vulgaris flavodoxin - analog binding - kinetics - protein - thermodynamics - reconstitution - intermediate
Abstract Although many proteins require the binding of a ligand to be functional, the role of ligand binding during folding is scarcely investigated. Here, we have reported the influence of the flavin mononucleotide (FMN) cofactor on the global stability and folding kinetics of Azotobacter vinelandii holoflavodoxin. Earlier studies have revealed that A. vinelandii apoflavodoxin kinetically folds according to the four-state mechanism: I1 ¿ unfolded apoflavodoxin ¿ I2 ¿ native apoflavodoxin. I1 is an off-pathway molten globule-like intermediate that populates during denaturant-induced equilibrium unfolding; I2 is a high energy on-pathway folding intermediate that never populates to a significant extent. Here, we have presented extensive denaturant-induced equilibrium unfolding data of holoflavodoxin, holoflavodoxin with excess FMN, and apoflavodoxin as well as kinetic folding and unfolding data of holoflavodoxin. All folding data are excellently described by a five-state mechanism: I1 + FMN ¿ unfolded apoflavodoxin + FMN ¿ I2 + FMN ¿ native apoflavodoxin + FMN ¿ holoflavodoxin. The last step in flavodoxin folding is thus the binding of FMN to native apoflavodoxin. I1, 12, and unfolded apoflavodoxin do not interact to a significant extent with FMN. The autonomous formation of native apoflavodoxin is essential during holoflavodoxin folding. Excess FMN does not accelerate holoflavodoxin folding, and FMN does not act as a nucleation site for folding. The stability of holoflavodoxin is so high that even under strongly denaturing conditions FMN needs to be released first before global unfolding of the protein can occur
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.