Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 342764
Title Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors
Author(s) Maas, P.M.F. van der
Source Wageningen University. Promotor(en): Gatze Lettinga, co-promotor(en): Piet Lens. - Wageningen : - ISBN 9789085043164 - 224
Department(s) Environmental Technology
Bioprocess Engineering
WIMEK
Publication type Dissertation, internally prepared
Publication year 2005
Keyword(s) stikstofoxiden - edta - redoxreacties - luchtverontreiniging - rookgassen - nitrogen oxides - edta - redox reactions - air pollution - flue gases
Categories Air Pollution
Abstract The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensive catalysts. Therefore, biological NOx removal techniques using denitrification may represent promising alternatives for the conventional SCR techniques. However, water based biofiltration requires relatively long scrubber/bioreactor retention times, i.e. big reactor volumes, due to the slow mass transfer of NO from the gas into the liquid phase. BioDeNOx is in principle a welcome alternative for conventional NOx removal techniques like SCR and water-based biofiltration, since it does not need high temperatures and catalysts, while scrubber retention times can be very short (<10 seconds) due to the chemically enhanced NO absorption. In this thesis, the BioDeNOx concept was investigated with special attention to the bioreactor key conversions: NO and Fe(III)EDTA- reduction. This study showed stable NO removal from the gas phase with efficiencies up to 80 %. It was found that the NO removal from the gas phase is primary determined by NO absorption kinetics. Therefore, a high Fe(II)EDTA2- concentration is required, i.e. the FeEDTA absorption liquor should be in the reduced state. However, a totally reduced system should be avoided, since this will induce sulfide accumulation. The latter process is unwanted, since already low sulfide concentrations showed an incomplete NO reduction due to inhibition of N2O reduction to N2. To achieve satisfying NO removal from the gas and to avoid sulfdogenic conditions, the redox potential of BioDeNOx reactors should be steered between -180 and -200 mV versus Ag/AgCl (pH 7.2±0.2). An ethanol dosing system that is controlled by the redox potential signal was shown to be a proper manner to do so
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.