Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 344276
Title Electrokinetics of diffuse soft interfaces. 2. Analysis based on the nonlinear Poisson-Boltzmann equation
Author(s) Duval, J.F.L.
Source Langmuir 21 (2005)8. - ISSN 0743-7463 - p. 3247 - 3258.
DOI https://doi.org/10.1021/la040108i
Department(s) Physical Chemistry and Colloid Science
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2005
Keyword(s) sensitive hydrogel layers - gel layers - particles - temperature
Abstract In a previous study (Langmuir 2004, 20, 10324), the electrokinetic properties of diffuse soft layers were theoretically investigated within the framework of the Debye-H¿ckel approximation valid in the limit of sufficiently low values for the Donnan potential. In the current paper, the electrokinetics is tackled on the basis of the rigorous nonlinearized Poisson-Boltzmann equation, the numerical evaluation of the electroosmotic velocity profile, and the analytically derived hydrodynamic velocity profile. The results are illustrated and discussed for a diffuse soft interface characterized by a linear gradient for the friction coefficient and the density of hydrodynamically immobile ionogenic groups in the transition region separating the bulk soft layer and the bulk electrolyte solution. In particular, it is shown how the strong asymmetry for the potential distribution, as met for high values of the bulk fixed charge density and/or low electrolyte concentrations, is reflected in the electrokinetic features of the diffuse soft layer. The analysis clearly highlights the shortcomings of the discontinuous approximation by Ohshima and others for the modeling of the friction and electrostatic properties of soft layers exhibiting high Donnan potentials. This is in line with reported electrokinetic measurements of various soft particles and permeable gels at low electrolyte concentrations which fail to match predictions based on Ohshima's theory.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.