Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 348676
Title Impacts of agricultural phosphorus use in catchments on shallow lake water quality: about buffers, time delays and equilibria
Author(s) Schippers, P.; Weerd, H. van de; Klein, J.J.M. de; Jong, B. de; Scheffer, M.
Source Science of the Total Environment 369 (2006)1-3. - ISSN 0048-9697 - p. 280 - 294.
DOI https://doi.org/10.1016/j.scitotenv.2006.04.028
Department(s) Aquatic Ecology and Water Quality Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2006
Keyword(s) soil-phosphorus - surface waters - sediment phosphorus - thame catchment - management - eutrophication - nutrient - nitrogen - runoff - land
Abstract Phosphorus (P) losses caused by intensive agriculture are known to have potentially large negative effects on the water quality of lakes. However, due to the buffering capacity of soils and lake ecosystems, such effects may appear long after intensive agriculture started. Here we present the study of a coupled shallow lake catchment model, which allows a glimpse of the magnitude of these buffer-related time delays. Results show that the buffering capacity of the lake water was negligible whereas buffering in the lake sediment postponed the final lake equilibrium for several decades. The surface soil layer in contact with runoff water was accountable for a delay of 550 years. The most important buffer, however, was the percolation soil layer that may cause a delay of 150-1700 years depending on agricultural P surplus levels. Although the buffers could postpone final lake equilibria for a considerable time, current and target agricultural surplus levels eventually led to very turbid conditions with total P concentrations of 2.0 and 0.6 mg L-1 respectively. To secure permanent clear water states the current agricultural P surplus of 15 kg P ha(-1) yr(-1) should drop to 0.7 kg P ha(-1) yr(-1). We present several simple equations that can be used to estimate the sustainable P surplus levels, buffer related time delays and equilibrium P concentrations in other catchment-lake systems. (c) 2006 Elsevier B.V. All rights reserved.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.