Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 350220
Title CLOSYS: Closed System for Water and Nutrient Management in Horticulture
Author(s) Marcelis, L.F.M.; Dieleman, J.A.; Boulard, T.; Garate, A.; Kittas, C.; Buschmann, C.; Brajeul, E.; Wieringa, G.; Groot, F. de; Loon, A. van; Kocsanyi, L.
Source Acta Horticulturae 718 (2006). - ISSN 0567-7572 - p. 375 - 382.
DOI https://doi.org/10.17660/ActaHortic.2006.718.43
Department(s) Agrosystems
Publication type Refereed Article in a scientific journal
Publication year 2006
Abstract The EU project CLOSYS aimed at developing a CLOsed SYStem for water and nutrients in horticulture. The main objective was to control water and nutrients accurately such that pollution is minimized and crop quality enhanced. The closed system as developed in this project consists of crop growth models and substrate models, a new substrate, an expert system, a real time controller, fluorescence sensors, ion-selective sensors and a technical infrastructure. Plant model: Mechanistic models for rose and sweet pepper were build and self-learning capacity was introduced. The models simulate crop growth, and demand and uptake of water and individual nutrients. Plant sensor: A fluorescence imaging system was developed and tested to be used as an indicator for plant performance and stress factors. Nutrient sensor: An on-line multi-ion sensor measures the concentration of individual nutrients pH and EC of the recirculating water in the greenhouse. Substrate model: A 3D substrate model simulates the water and nutrient flows in the substrate depending on the root absorption and fertigation. Substrate: A rockwool substrate with improved physical and chemical properties was developed to allow a better control of water and nutrient fluxes in the root-zone. Expert system: The expert system, using model and sensor information and weather forecasts, determines a daily plan for fertigation. This plan contains the set-points for the real time controller. Real time controller: The real time controller controls the water and nutrient supply. It upgrades the fertigation parameters (irrigation EC, dose and frequency) to satisfy the set-points issued by the expert system, depending on current status of the system and on time constants and dynamic characteristics of the system. Technical infrastructure: All subsystems were integrated such that they can request data from the irrigation computer database. With these data, new set points for fertigation are calculated, whereafter the irrigation computer executes the requested tasks. Closed system: All components together form the closed system for water and nutrients. The performance of the closed system was compared to a standard sweet pepper growing system. The system has been running satisfactorily during a prolonged period (1 and a half year). Water and nutrient use, its availability in the rooting zone as well as the recirculating drainage water were controlled accurately.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.