Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 351208
Title The folding energy landscape of apoflavodoxin is rugged. hydrogen exchange reveals non-productive misfolded intermediates.
Author(s) Bollen, Y.J.M.; Kamphuis, M.B.; Mierlo, C.P.M. van
Source Proceedings of the National Academy of Sciences of the United States of America 103 (2006)11. - ISSN 0027-8424 - p. 4095 - 4100.
DOI https://doi.org/10.1073/pnas.0509133103
Department(s) Biochemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2006
Keyword(s) azotobacter-vinelandii apoflavodoxin - protein - pathways - equilibrium - cooperativity - spectroscopy - sensitivity - topology - ensemble - dynamics
Abstract Many native proteins occasionally form partially unfolded forms (PUFs), which can be detected by hydrogen/deuterium exchange and NMR spectroscopy. Knowledge about these metastable states is required to better understand the onset of folding-related diseases. So far, not much is known about where PUFs reside within the energy landscape for protein folding. Here, four PUFs of the relatively large apoflavodoxin (179 aa) are identified. Remarkably, at least three of them are partially misfolded conformations. The misfolding involves side-chain contacts as well as the protein backbone. The rates at which the PUFs interconvert with native protein have been determined. Comparison of these rates with stopped-flow data positions the PUFs in apoflavodoxin's complex folding energy landscape. PUF1 and PUF2 are unfolding excursions that start from native apoflavodoxin but do not continue to the unfolded state. PUF3 and PUF4 could be similar excursions, but their rates of formation suggest that they are on a dead-end folding route that starts from unfolded apoflavodoxin and does not continue all of the way to native protein. All PUFs detected thus are off the protein's productive folding route
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.