Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 351541
Title Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites
Author(s) Reichstein, M.; Papale, D.; Valentini, R.; Aubinet, M.; Bernhofer, C.; Knohl, A.; Laurila, T.; Lindroth, A.; Moors, E.J.; Pilegaard, K.; Seufert, G.
Source Geophysical Research Letters 34 (2007). - ISSN 0094-8276 - 5
DOI https://doi.org/10.1029/2006GL027880
Department(s) Alterra - Centre for Water and Climate
Wageningen Environmental Research
Publication type Refereed Article in a scientific journal
Publication year 2007
Keyword(s) netto ecosysteem koolstofbalans - eddy-covariantie - primaire productie - koolstofcyclus - terrestrische ecosystemen - net ecosystem carbon balance - eddy covariance - primary production - carbon cycle - terrestrial ecosystems - spatial variability - water-vapor - respiration - exchange - forests - climate - productivity - temperature - vegetation - dioxide
Categories Climatology
Abstract Pioneering work in the last century has resulted in a widely accepted paradigm that primary production is strongly positively related to temperature and water availability such that the northern hemispheric forest carbon sink may increase under conditions of global warming. However, the terrestrial carbon sink at the ecosystem level (i.e. net ecosystem productivity, NEP) depends on the net balance between gross primary productivity (GPP) and ecosystem respiration (TER). Through an analysis of European eddy covariance flux data sets, we find that the common climate relationships for primary production do not hold for NEP. This is explained by the fact that decreases in GPP are largely compensated by parallel decreases in TER when climatic factors become more limiting. Moreover, we found overall that water availability was a significant modulator of NEP, while the multivariate effect of mean annual temperature is small and not significant. These results indicate that climate- and particularly temperature-based projections of net carbon balance may be misleading. Future research should focus on interactions between the water and carbon cycles and the effects of disturbances on the carbon balance of terrestrial ecosystems.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.