Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 355362
Title Modeling to control spores in raw milk
Author(s) Vissers, M.
Source Wageningen University. Promotor(en): J.M.G. Lankveld, co-promotor(en): M.C. te Giffel; P. de Jong. - [S.l.] : S.n. - ISBN 9789085046738 - 143
Department(s) Product Design and Quality Management Group
VLAG
Publication type Dissertation, externally prepared
Publication year 2007
Keyword(s) rauwe melk - bacteriële sporen - boterzuurbacteriën - bacillus cereus - voedselbesmetting - microbiële besmetting - melkhygiëne - zuivelhygiëne - simulatiemodellen - raw milk - bacterial spores - butyric acid bacteria - bacillus cereus - food contamination - microbial contamination - milk hygiene - dairy hygiene - simulation models
Categories Dairy Products / Food Microbiology
Abstract A modeling approach was used to identify measures at the farm that reduce transmission of microorganisms to raw milk. Butyric acid bacteria (BAB) and Bacillus cereus were used as case-studies. Minimizing the concentration of BAB spores in raw milk is important to prevent late-blowing of Gouda-type cheeses. Reducing the concentration of B. cereus spores in raw milk increases the shelf life of refrigerated pasteurized dairy products.

First, predictive models were developed based on a translation of contamination pathways into chains of unit-operations. Via simulations, strategies were identified to control spore concentrations in farm tank milk (FTM)below 1,000 spores/L.Subsequently, the identified strategies were validated using data from a year-long field survey held at 24 Dutch farms.

The results of this study show that mathematical modeling is very useful to identify effective measures to reduce the contamination of FTM with spores. The control strategies derived using model simulations were in agreement with results from the field survey. The following general conclusions were drawn:

·       To minimize the concentration of BAB spores in FTM, it is by far most important to prevent growth of BAB in grass- and corn-silage. Farmers should aim for a concentration in grass- and corn-silage fed to cowsbelow 1,000 spores/g. To achieve this, it is essential to prevent oxygen penetration into the silage silo and to remove molded and deteriorated silage from the ration fed to the cows. Measures aimed at other parts of the contamination pathway, such as teat cleaning prior to milking, are much less effective.

·       The concentration of B. cereus spores in FTM isnormally below 1,000 spores/L.During housing and pasturing spores of B. cereus in FTM originate from feeds. Two critical factors could lead to concentrations above 1,000 spores/L. Firstly, the contamination teats with soil is a high risk because soil can contain high concentrations of B. cereus spores. Secondly, build-up of B. cereus in improperly cleaned milking equipment could lead to high spore concentrations in FTM.

·       Implementation of the measures identified in this study could make late-blowing of Gouda-type cheeses a rare incident and prolong the shelf life of refrigerated pasteurized consumer milk by approximately 10%.


A modeling approach was used to identify measures at the farm that reduce transmission of microorganisms to raw milk. Spores of butyric acid bacteria (BAB) and Bacillus cereus were used as case-studies because of their relevance for the Dutch dairy industry..The following general conclusions were drawn:

·       To minimize the concentration of BAB spores in FTM, it is by far most important to prevent growth of BAB in grass- and corn-silage. Farmers should aim for a concentration in grass- and corn-silage fed to cowsbelow 1,000 spores/g. To achieve this, it is essential to prevent oxygen penetration into the silage silo and to remove molded and deteriorated silage from the ration fed to the cows. Measures aimed at other parts of the contamination pathway, such as teat cleaning prior to milking, are much less effective.

·       The concentration of B. cereus spores in FTM isnormally below 1,000 spores/L.During housing and pasturing spores of B. cereus in FTM originate from feeds. Two critical factors could lead to concentrations above 1,000 spores/L. Firstly, the contamination teats with soil is a high risk because soil can contain high concentrations of B. cereus spores. Secondly, build-up of B. cereus in improperly cleaned milking equipment could lead to high spore concentrations in FTM.

·       Implementation of the measures identified in this study could make late-blowing of Gouda-type cheeses a rare incident and prolong the shelf life of refrigerated pasteurized consumer milk by approximately 10%.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.