Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 357108
Title Production ecology of agroforestry systems: A minimal mechanistic model and analytical derivation of the land equivalent ratio
Author(s) Keesman, K.J.; Werf, W. van der; Keulen, H. van
Source Mathematical Biosciences 209 (2007)2. - ISSN 0025-5564 - p. 608 - 623.
Department(s) Systems and Control Group
Crop and Weed Ecology
Plant Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2007
Keyword(s) crop growth - radiation
Abstract In this paper, the yield and the land equivalent ratio (LER) of a silvo-arable agroforestry (SAF) system, containing one tree and one crop species, is analyzed analytically using a minimal mechanistic model describing the system dynamics. Light competition between tree and crop is considered using light extinction functions. The tree leaf area is driven by annual increase in the number of leaf-bearing shoots with a seasonal cycle of bud burst, leaf expansion and senescence. The crop leaf area dynamics is driven by the solar radiation, heat sum and the dry matter allocation to the leaves. As a consequence of this, the model consists of six state equations expressing the temporal dynamics of: (1) tree biomass; (2) tree leaf area; (3) number of shoots per tree; (4) crop biomass; (5) crop leaf area index, and (6) heat sum. The main outputs of the model are the growth dynamics and final yields of trees and crops. Daily inputs are temperature and radiation. Planting densities, initial biomass of tree and crop species and growth parameters must be specified. The main parameters are those describing light interception, conversion to dry matter and leaf area. Given the crop cover and the tree parameters, it is shown that under potential growing conditions the land equivalent ratio can be explicitly expressed in terms of these parameters.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.