Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 366666
Title Protein fibrillization: preparation, mechanism and application
Author(s) Akkermans, C.
Source Wageningen University. Promotor(en): Remko Boom; Erik van der Linden, co-promotor(en): Atze Jan van der Goot; Paul Venema. - [S.l.] : S.n. - ISBN 9789085048794 - 162
Department(s) Food Process Engineering
Physics and Physical Chemistry of Foods
VLAG
Publication type Dissertation, internally prepared
Publication year 2008
Keyword(s) bèta-lactoglobuline - wei-eiwit - structuur - ingrediënten - voedingsmiddelen - vezels - fysische toestand - levensmiddelenfysica - beta-lactoglobulin - whey protein - structure - ingredients - foods - fibres - physical state - food physics
Categories Food Physics
Abstract The development of new functional ingredients is important for future food products. This PhD research aimed at the development of protein based structuring agents. Structuring agents are ingredrients that can be used to tailor the texture (and the mouth-feel) of products. Proteins were transferred into protein fibres (fibrils) that are long (1 micrometer) and very thin (few nanometers). Due to their special properties, protein fibrils offer unique possibilities to mimick meat structures and make products like yoghurt more creamy. This research shows that protein fibrils can be made from different protein sources (whey protein of milk, soy protein, potato protein) by heating an acidic protein solution. Furthermore, the mechanism of fibril formation was clarified. As a result, it was possible to optimize the fibril production and control the fibril properties. Finally, an important step was made towards the application of these fibrils in food products by studying the behaviour of fibrils in a model system for food products.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.