Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 368433
Title Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia
Author(s) Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H.
Source Catena 73 (2008)2. - ISSN 0341-8162 - p. 212 - 224.
Department(s) Soil Science Centre
Wageningen Environmental Research
Publication type Refereed Article in a scientific journal
Publication year 2008
Keyword(s) climate-change - kalimantan - indonesia - forests - fires - bog
Abstract Interrelationships between peat and water were studied using a hydropedological modelling approach for adjacent relatively intact and degraded peatland in Central Kalimantan, Indonesia. The easy to observe degree of peat humification provided good guidance for the assignment of more difficult to measure saturated hydraulic conductivities to the acrotelm¿catotelm hydrological system. Ideally, to prevent subsidence and fire, groundwater levels should be maintained between 40 cm below and 100 cm above the peat surface. Calculated groundwater levels for different years and for different months within a single year showed that these levels can drop deeper than the critical threshold of 40 cm below the peat surface whilst flooding of more than 100 cm above the surface was also observed. In July 1997, a dry El Niño year, areas for which deep groundwater levels were calculated coincided with areas that were on fire as detected from radar images. The relatively intact peatland showed resilience towards disturbance of its hydrological integrity whereas the degraded peatland was susceptible to fire. Hydropedological modelling identified areas with good restoration potential based on predicted flooding depth and duration. Groundwater level prediction maps can be used in fire hazard warning systems as well as in land utilization and restoration planning. These maps are also attractive tools to move from the dominant uni-sectoral approach in peatland resource management toward a much more promising multi-sectoral approach involving various forestry, agriculture and environment agencies. It is demonstrated that the combination of hydrology and pedology is essential for wise use of valuable but threatened tropical peatland ecosystems.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.