Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 369308
Title Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp strain DCA1
Author(s) Hage, J.C.; Houten, R.T.; Tramper, J.; Hartmans, S.
Source Applied Microbiology and Biotechnology 64 (2004)5. - ISSN 0175-7598 - p. 718 - 725.
DOI https://doi.org/10.1007/s00253-004-1586-6
Department(s) Bioprocess Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) biologische behandeling - membranen - ethyleendichloride - biofilms - biodegradatie - verwijdering - afvalwaterbehandeling - pseudomonas - insecticiden - beluchting - biological treatment - membranes - ethylene dichloride - biodegradation - removal - waste water treatment - insecticides - aeration - waste-gas treatment - aliphatic-compounds - aerobic biofilms - degradation - groundwater - bioreactor - kinetics - trichloroethylene - model - water
Categories Waste Water Treatment
Abstract A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown in a continuous culture resulted in the formation of a stable and active DCA-degrading biofilm on the membrane. The maximum removal rate of the MBR was reached at a DCA concentration of approximately 80 µM. Simulation of the DCA fluxes into the biofilm showed that the MBR performance at lower concentrations was limited by the DCA diffusion rate rather than by kinetic constraints of strain DCA1. Aerobic biodegradation of DCA present in anoxic water could be achieved by supplying oxygen solely from the gas phase to the biofilm grown on the liquid side of the membrane. As a result, direct aeration of the water, which leads to undesired coagulation of iron oxides, could be avoided
A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown in a continuous culture resulted in the formation of a stable and active DCA-degrading biofilm on the membrane. The maximum removal rate of the MBR was reached at a DCA concentration of approximately 80 muM. Simulation of the DCA fluxes into the biofilm showed that the MBR performance at lower concentrations was limited by the DCA diffusion rate rather than by kinetic constraints of strain DCA1. Aerobic biodegradation of DCA present in anoxic water could be achieved by supplying oxygen solely from the gas phase to the biofilm grown on the liquid side of the membrane. As a result, direct aeration of the water, which leads to undesired coagulation of iron oxides, could be avoided.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.