Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 372984
Title Earthworms counterbalance the negative effect of microorganisms on plant diversity and enhance to tolerance of grasses to nematodes
Author(s) Wurst, S.; Allema, A.B.; Duyts, H.; Putten, W.H. van der
Source Oikos 117 (2008)5. - ISSN 0030-1299 - p. 711 - 718.
DOI https://doi.org/10.1111/j.0030-1299.2008.16333.x
Department(s) Biological Farming Systems
Laboratory of Nematology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2008
Keyword(s) ground insect herbivory - soil food-web - community structure - early succession - microbial biomass - performance - grassland - productivity - lumbricidae - determinant
Abstract Plant community composition is affected by a wide array of soil organisms with diverse feeding modes and functions. Former studies dealt with the high diversity and complexity of soil communities by focusing on particular functional groups in isolation, by grouping soil organisms into body size classes or by using whole communities from different origins. Our approach was to investigate both the individual and the interaction effects of highly abundant soil organisms (microorganisms, nematodes and earthworms) to evaluate their impacts on grassland plant communities. Earthworms increased total plant community biomass by stimulating root growth. Nematodes reduced the biomass of grasses, but this effect was alleviated by the presence of earthworms. Non-leguminous forb biomass increased in the presence of nematodes, probably due to an alleviation of the competitive strength of grasses by nematodes. Microorganisms reduced the diversity and evenness of the plant community, but only in the absence of earthworms. Legume biomass was not affected by soil organisms, but Lotus corniculatus flowered earlier in the presence of microorganisms and the number of flowers decreased in the presence of nematodes. The results indicate that earthworms have a profound impact on the structure of grassland plant communities by counterbalancing the negative effects of plant-feeding nematodes on grasses and by conserving the evenness of the plant community. We propose that interacting effects of functionally dissimilar soil organisms on plant community performance have to be taken into account in future studies, since individual effects of soil organism groups may cancel out each other in functionally diverse soil communities.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.