Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 373279
Title High-throughput identification and validation of in situ-expressed genes of Lactococcus lactis
Author(s) Bachmann, H.; Kleerebezem, M.; Hylckama Vlieg, J.E.T. van
Source Applied and Environmental Microbiology 74 (2008)15. - ISSN 0099-2240 - p. 4727 - 4736.
Department(s) Microbiology
Publication type Refereed Article in a scientific journal
Publication year 2008
Keyword(s) lactobacillus-plantarum genes - complete genome sequence - streptococcus-lactis - escherichia-coli - functional-characterization - temporal expression - marker removal - acid bacteria - lox sites - plasmid
Abstract Understanding the functional response of bacteria to their natural environment is one of the current challenges in microbiology. Over the past decades several techniques have been developed to study gene expression in complex natural habitats. Most of these methods, however, are laborious, and validation of results under in situ conditions is cumbersome. Here we report the improvement of the recombinase-based in vivo expression technology (R-IVET) by the implementation of two additional reporter genes. The first one is an alpha-galactosidase gene (melA), which facilitates the rapid identification of in vivo-induced genes. Second, the bacterial luciferase genes (luxAB) are transcriptionally coupled to the resolvase gene, which allows rapid validation and characterization of in vivo-induced genes. The system is implemented and validated in the industrially important lactic acid bacterium Lactococcus lactis. We demonstrate the applicability of the advanced R-IVET system by the identification and validation of lactococcal promoter elements that are induced in minimal medium compared to the commonly used rich laboratory medium M17. R-IVET screening led to the identification of 19 promoters that predominantly control expression of genes involved in amino acid and nucleotide metabolism and in transport functions. Furthermore, the luciferase allows high-resolution transcription analysis and enabled the identification of complex medium constituents and specific molecules involved in promoter control. Rapid target validation exemplifies the high-throughput potential of the extended R-IVET system. The system can be applied to other bacterial species, provided that the reporter genes used are functional in the organism of interest
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.