Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 373699
Title Removal of phytotoxic compounds from torrefied grass fibres by plant-beneficial microorganisms
Author(s) Trifonova, R.D.; Postma, J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Ketelaars, J.J.M.H.; Elsas, J.D. van
Source FEMS microbiology ecology 66 (2008)1. - ISSN 0168-6496 - p. 158 - 166.
DOI https://doi.org/10.1111/j.1574-6941.2008.00508.x
Department(s) Biointeracties and Plant Health
PRI Bioscience
Laboratory of Plant Physiology
Agrosystems
EPS-3
Publication type Refereed Article in a scientific journal
Publication year 2008
Keyword(s) mill waste-water - escherichia-coli - phenolic removal - laccase activity - growth - strain - peat - detoxification - fermentation - enzyme
Abstract We aimed to select microorganisms colonizing torrefied grass fibres (TGF) and simultaneously reducing the phytotoxicity which appeared after heat treatment of the fibres. Eighty-eight bacterial strains and one fungus, previously isolated from a sequential enrichment experiment on torrefied fibres and extracts, were tested separately for their capacity to decrease phytotoxicity. Eleven of the bacterial strains and the fungus significantly reduced phytotoxicity. These organisms were checked for their ability to grow on agar containing phenol, 2-methoxyphenol, 2,6-dimethoxyphenol, 2-furalaldehyde, pyrrole-2-carboxaldehyde and furan-2-methanol as sole carbon sources. The fungus F/TGF15 and the bacterial strain 66/TGF15 were able to grow on all six compounds. Strains 15/TGE5, 23/TGE5, 43/TGE20, 56/TGF10 and 95/TGF15 grew on two to four compounds, and strain 72/TGF15 only on one compound. Strains 31/TGE5, 34/TGE5, 48/TGE20 and 70/TGF15 did not grow on any of the single toxic compounds. GC analyses of torrefied grass extracts (TGE) determined which compounds were removed by the microorganisms. F/TGF15 was the only isolate depleting phenol, 2-methoxyphenol, 2-dihydrofuranone and pyrrole-2,5-dione-3-ethyl-4-methyl. Strains 15/TGE5, 23/TGE5, 31/TGE5 and 56/TGF10, and the fungus depleted 2-furalaldehyde, 2-furan-carboxaldehyde-5-methyl, pyrrole-2-carboxaldehyde, 5-acetoxymethyl-2-furaldehyde and benzaldehyde-3-hydroxy-4-methoxy. These promising candidates for colonizing and simultaneously reducing the phytotoxicity of TGF were affiliated with Pseudomonas putida, Serratia plymuthica, Pseudomonas corrugata, Methylobacterium radiotolerans and Coniochaeta ligniaria.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.