Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 381112
Title Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change.
Author(s) Alberton, O.; Kuyper, T.W.
Source Global Change Biology 15 (2009)1. - ISSN 1354-1013 - p. 166 - 175.
DOI https://doi.org/10.1111/j.1365-2486.2008.01714.x
Department(s) Soil Biology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2009
Keyword(s) elevated atmospheric co2 - progressive n limitation - douglas-fir seedlings - terrestrial ecosystems - deposition gradient - mycorrhizal fungal - community change - soil biota - dioxide - metaanalysis
Abstract The ectomycorrhizal (ECM) symbiosis can cause both positive and negative feedback with trees under elevated CO2. Positive feedback arises if the additional carbon (C) increases both nutrient uptake by the fungus and nutrient transfer to the plant, whereas negative feedback results from increased nutrient uptake and immobilization by the fungus and reduced transfer to the plant. Because species of ECM fungi differ in their C and nitrogen (N) demand, understanding fungal species-specific responses to variation in C and N supply is essential to predict impacts of global change. We investigated fungal species-specific responses of ECM Scots pine (Pinus sylvestris) seedlings under ambient and elevated CO2 (350 or 700 ¿L L¿1 CO2) and under low and high mineral N availability. Each seedling was associated with one of the following ECM species: Hebeloma cylindrosporum, Laccaria bicolor and Suillus bovinus. The experiment lasted 103 days. During the final 27 days, seedlings were labeled with 14CO2 and 15N. Most plant and fungal parameters were significantly affected by fungal species, CO2 level and N supply. Interactions between fungal species and CO2 were also regularly significant. At low N availability, elevated CO2 had the smallest impact on the photosynthetic performance of seedlings inoculated with H. cylindrosporum and the largest impact on seedlings with S. bovinus. At ambient CO2, increasing N supply had the smallest impact on seedlings inoculated with S. bovinus and the largest on seedlings inoculated with H. cylindrosporum. At low N availability, extraradical hyphal length increased after doubling CO2 level, but this was significant only for L. bicolor. At ambient CO2, increasing N levels reduced hyphal length for both H. cylindrosporum and S. bovinus, but not for L. bicolor. We discuss the potential interplay of two major elements of global change, elevated CO2 and increased N availability, and their effects on plant growth. We conclude that increased N supply potentially relieves mycorrhiza-induced progressive N limitation under elevated CO2
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.