Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 384049
Title Identification of novel auxin responses during Arabidopsis embryogenesis
Author(s) Rademacher, E.H.
Source Wageningen University. Promotor(en): Sacco de Vries, co-promotor(en): Dolf Weijers. - [S.l. : S.n. - ISBN 9789085854906 - 110
Department(s) Biochemistry
Publication type Dissertation, internally prepared
Publication year 2009
Keyword(s) arabidopsis - embryogenese - plantenfysiologie - auxinen - celfysiologie - arabidopsis - embryogenesis - plant physiology - auxins - cell physiology
Categories Plant Development
Abstract Plants normally form one embryo per seed. Under special circumstances, such as death of the embryo, a second embryo can develop from a supportive structure called the suspensor. These suspensor cells therefore provide a reservoir of stem cells for the generation of secondary embryos. At the start of this project, the mechanisms that control the formation of secondary embryos were completely unclear.
By conducting a systematic screen for cellular responses to the plant hormone auxin during embryogenesis we found that auxin prevents embryo development from suspensor cells. The detailed analysis of auxin response components allowed us to identify the auxin-dependent transcription factors that mediate auxin action in the suspensor. Furthermore, we found that the control of expression of these auxin response transcription factors contributes to early embryo pattern formation. This work identified the first molecular players in the control of suspensor-embryo transformation and provides a stepping stone for elucidating the genetic networks that control embryo identity in plants.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.