Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 384735
Title Postprandial oxidative losses of free and protein-bound amino acids in the diet: interactions and adaptation
Author(s) Nolles, J.A.; Verreijen, A.M.; Koopmanschap, R.E.; Verstegen, M.W.A.; Schreurs, V.V.A.M.
Source Journal of Animal Physiology and Animal Nutrition 93 (2009)4. - ISSN 0931-2439 - p. 431 - 438.
DOI https://doi.org/10.1111/j.1439-0396.2008.00820.x
Department(s) Human and Animal Physiology
Nutrition and Disease
Animal Nutrition
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2009
Keyword(s) growing-pigs - nitrogen-utilization - free lysine - breath test - humans - metabolism - assimilation - catabolism - retention - casein
Abstract Postprandial oxidation of dietary free amino acids or egg white protein was studied using the [13CO2] breath test in rats, as well as in humans. Thirty-eight male rats were assigned to four dietary test groups. Two diets only differed in their protein fraction. Diet I contained 21% egg white protein. For the breath test egg white protein, intrinsically labelled with [1-13C]-leucine, was used as a substrate. Diet II contained the same amino acids as diet I, though not as egg white protein but in free form. Free [1-13C]-leucine was used to label this diet. In addition, two 1:1 mixtures of both diets were used. During the breath test either the free amino acid or the protein fraction was labelled as in diets I or II. The animals were breath-tested following short-term (day 5) and long-term adaptation (day 20) to their experimental diet. For all diets, including the mixed diets, postprandial oxidative losses on day 5 were significantly higher for the free leucine compared with the protein-derived leucine. Differences between free and protein-derived leucine oxidation had, however, largely disappeared on day 20. The human subjects were breath-tested without any adaptation period to the diets. The oxidative losses of free leucine were also higher than those of protein-derived leucine. None of the studies showed any indication for an interaction between the oxidation of protein-derived amino acids and free amino acids. It is concluded that free and protein-derived amino acids in the diet are mainly metabolized independently
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.