Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 391982
Title Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis
Author(s) Westphal, Y.; Schols, H.A.; Voragen, A.G.J.; Gruppen, H.
Source Journal of Chromatography. A, Including electrophoresis and other separation methods 1217 (2010)5. - ISSN 0021-9673 - p. 689 - 695.
DOI https://doi.org/10.1016/j.chroma.2009.12.005
Department(s) Food Chemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) treated eucalyptus wood - hairy ramified regions - capillary-electrophoresis - black-currants - polysaccharides - pectin - xylogalacturonan - quantification - nomenclature - ionization
Abstract Separation and characterization of complex mixtures of oligosaccharides is quite difficult and, depending on elution conditions, structural information is often lost. Therefore, the use of a porous-graphitized-carbon (PGC)-HPLC-ELSD-MSn-method as analytical tool for the analysis of oligosaccharides derived from plant cell wall polysaccharides has been investigated. It is demonstrated that PGC-HPLC can be widely used for neutral and acidic oligosaccharides derived from cell wall polysaccharides. Furthermore, it is a non-modifying technique that enables the characterization of cell wall oligosaccharides carrying, e.g. acetyl groups and methylesters. Neutral oligosaccharides are separated based on their size as well as on their type of linkage and resulting 3D-structure. Series of the planar ß-(1,4)-xylo- and ß-(1,4)-gluco-oligosaccharides are retained much more by the PGC material than the series of ß-(1,4)-galacto-, ß-(1,4)-manno- and a-(1,4)-gluco-oligosaccharides. Charged oligomers such as a-(1,4)-galacturonic acid oligosaccharides are strongly retained and are eluted only after addition of trifluoroacetic acid depending on their net charge. Online-MS-coupling using a 1:1 splitter enables quantitative detection of ELSD as well as simple identification of many oligosaccharides, even when separation of oligosaccharides within a complex mixture is not complete. Consequently, PGC-HPLC-separation in combination with MS-detection gives a powerful tool to identify a wide range of neutral and acidic oligosaccharides derived from various cell wall polysaccharides.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.