Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 393290
Title Why low powdered activated carbon addition reduces membrane fouling in MBRs
Author(s) Remy, M.J.J.; Potier, V.; Temmink, B.G.; Rulkens, W.H.
Source Water Research 44 (2010)3. - ISSN 0043-1354 - p. 861 - 867.
DOI https://doi.org/10.1016/j.watres.2009.09.046
Department(s) Environmental Technology
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) afvalwaterbehandeling - waterzuivering - actieve kool - adsorptie - membranen - biologische filtratie - filtreerbaarheid - uitvlokking - biodegradatie - zuiveringsinstallaties - waste water treatment - water treatment - activated carbon - adsorption - membranes - biological filtration - filterability - flocculation - biodegradation - purification plants - waste-water treatment - bioreactor mbr - sludge - flux - performance - filtration - bioflocculation - operation
Categories Waste Water Treatment
Abstract Previous research had demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactor (MBRs). In this contribution several mechanisms to explain this beneficial effect of PAC were investigated, including enhanced scouring of the membrane surface by PAC particles, adsorption of membrane foulants by PAC and subsequent biodegradation and a positive effect of PAC on the strength of the sludge flocs. It was concluded that the latter mechanism best explains why low dosages of PAC significantly reduce membrane fouling. Cheaper alternatives for PAC may have a similar effect
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.