Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 398474
Title Fate of hormones and pharmaceuticals during combined anaerobic treatment and nitrogen romoval by partial nitritation-anammox in vacuum collected black water
Author(s) Graaff, M.S. de; Vieno, N.M.; Kujawa, K.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.
Source Water Research 45 (2011)1. - ISSN 0043-1354 - p. 375 - 383.
DOI https://doi.org/10.1016/j.watres.2010.08.023
Department(s) Environmental Technology
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) sewage-treatment plants - personal care products - waste-water - activated-sludge - aquatic environment - musk fragrances - surface waters - estrogens - antibiotics - behavior
Abstract Vacuum collected black (toilet) water contains hormones and pharmaceuticals in relatively high concentrations (mu g/L to mg/L range) and separate specific treatment has the potential of minimizing their discharge to surface waters. In this study, the fate of estrogens (natural and synthetical hormones) and pharmaceuticals (paracetamol, metoprolol, propranolol, cetirizine, doxycycline, tetracycline, ciprofloxacin, trimethoprim, carbamazepine, ibuprofen and diclofenac) in the anaerobic treatment of vacuum collected black water followed by nitrogen removal by partial nitritation-anammox was investigated. A new analytical method was developed to detect the presence of several compounds in the complex matrix of concentrated black water. Detected concentrations in black water ranged from 1.1 mu g/L for carbamazepine to >1000 mu g/L for paracetamol. Anaerobic treatment was only suitable to remove the majority of paracetamol (>90%). Metoprolol was partly removed (67%) during aerobic treatment. Deconjugation could have affected the removal efficiency of ibuprofen as concentrations even increased during anaerobic treatment and only after the anammox treatment 77% of ibuprofen was removed. The presence of persistent micro-pollutants (diclofenac, carbamazepine and cetirizine), which are not susceptible for biodegradation, makes the application of advanced physical and chemical treatment unavoidable. (C) 2010 Elsevier Ltd. All rights reserved.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.