Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431579
Title Measuring water-vapour and carbon-dioxide fluxes at field scales with scintillometry
Author(s) Kesteren, A.J.H. van
Source Wageningen University. Promotor(en): Bert Holtslag, co-promotor(en): Oscar Hartogensis. - [S.l.] : s.n. - ISBN 9789461734235 - 212
Department(s) Meteorology and Air Quality
WIMEK
Publication type Dissertation, internally prepared
Publication year 2012
Keyword(s) scintillometrie - waterdamp - kooldioxide - meteorologie - meettechnieken - scintillometry - water vapour - carbon dioxide - meteorology - measurement techniques
Categories Meteorology (General)
Abstract

Scintillometry is a measurement technique that has proven itself to be of great value for measuring spatial-averaged fluxes of sensible heat, momentum, and evapotranspiration. Furthermore, for crop fields (field scales), scintillometry has been shown to accurately determine the sensible-heat and momentum flux over time intervals as short as 6 seconds. As a consequence, interests in scintillometry are growing and scintillometers that determine sensible-heat fluxes and momentum fluxes have become commercially available.

This thesis deals with two aspects of scintillometry. First, after a general introduction of scintillometry, measurement errors that have been observed in the large-aperture scintillometer from Kipp&Zonen and in the SLS field-scale scintillometer from Scintec are evaluated. For both scintillometer types, we discuss the variability in the measurement errors among different instruments and, where possible, we give solutions to remove these errors. Furthermore, we present the results of a prototype scintillometer that was developed as part of the research project. With our proposed design, we aim to overcome the measurement errors in the Scintec scintillometer and extend the applicability of the field-scale scintillometer to paths that are longer than 200 m.

Second, we extend the application of field-scale scintillometry to the flux measurements of latent-heat, carbon-dioxide, and other passive scalars. Until now, scintillometers could not be used for measuring passive-scalar fluxes over crop fields and we show that with our extended methodology these fluxes can be accurately determined over time intervals as short as 1 minute. The methodology is based on a combination of scintillometer measurements and additional high-frequency scalar measurements and works under conditions of homogeneous turbulence, i.e. single crop fields. We introduce four methods, notably the energy-balance method, the Bowen-variance method, the flux-variance method, and the structure-parameter method. Using several validation methods, we show that the energy-balance method is unsuitable for estimating scalar fluxes over 1-min averaging intervals. The Bowen-variance and flux-variance method perform better and the structure-parameter method accurately resolves 1-minute fluxes. Thus, with this methodology fluxes can be resolved with a high temporal resolution, making it possible to study vegetation in a natural environment under non-stationary conditions. This allows us to show that the wheat vegetation affects fluxes upon changes in solar radiation in time periods clearly shorter than 30 minutes and that the canopy resistance can change significantly within several minutes.


Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.