Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 432248
Title Predicting micro thermal habitat of lizards in a dynamic thermal environment
Author(s) Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Toxopeus, A.G.; Bian, B.M.; Liu, Y.
Source Ecological Modelling 231 (2012). - ISSN 0304-3800 - p. 126 - 133.
DOI https://doi.org/10.1016/j.ecolmodel.2012.02.012
Department(s) Wildlife Ecology and Conservation
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) climate-change - thermoregulatory behavior - vegetation distribution - mechanistic ecology - distribution models - cellular-automata - activity patterns - body-temperature - selection - movement
Abstract Understanding behavioural thermoregulation and its consequences is a central topic in ecology. In this study, a spatial explicit model was developed to simulate the movement and thermal habitat use of lizards in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton (CA) algorithm and links the physiology knowledge of the animal with the spatial utilization of its microhabitat. The model assumed that a lizard tries to maintain its preferred body temperature in a dynamic thermal environment by continuously selecting positions with different thermal conditions. The sequence of chosen positions formed a chain defining the individual's path, to be later aggregated into a map of thermal habitat use. An experiment was designed to test the model. An ocellated lizard (Timon lepidus) was kept in a terrarium with controlled dynamic thermal environment, and the thermal environment as well as the movement of the lizard were recorded by a variety of sensors. The model was tested to predict the spatial utilization of a lizard's thermal habitat in the terrarium based on three categories: high, moderate and low occupancy. The simulated results were compared with observations from the animal experiment. The predicted overall pattern of the micro-habitat occupancy of the lizard within 4 days matched the observation, at an overall accuracy of 75.7%. The results suggest that thermal habitat use by lizards in a controlled environment may be predicted by the integrated model of the lizard's body temperature and the CA algorithm.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.