Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 433556
Title Bayesian Variable Selection to identify QTL affecting a simulated quantitative trait
Author(s) Schurink, A.; Janss, L.L.G.; Heuven, H.C.M.
Source BMC Proceedings 6 (2012)suppl. 2. - ISSN 1753-6561 - 4 p.
DOI https://doi.org/10.1186/1753-6561-6-S2-S8
Department(s) Animal Breeding and Genomics
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2012
Abstract Background Recent developments in genetic technology and methodology enable accurate detection of QTL and estimation of breeding values, even in individuals without phenotypes. The QTL-MAS workshop offers the opportunity to test different methods to perform a genome-wide association study on simulated data with a QTL structure that is unknown beforehand. The simulated data contained 3,220 individuals: 20 sires and 200 dams with 3,000 offspring. All individuals were genotyped, though only 2,000 offspring were phenotyped for a quantitative trait. QTL affecting the simulated quantitative trait were identified and breeding values of individuals without phenotypes were estimated using Bayesian Variable Selection, a multi-locus SNP model in association studies. Results Estimated heritability of the simulated quantitative trait was 0.30 (SD = 0.02). Mean posterior probability of SNP modelled having a large effect ( pˆi) was 0.0066 (95%HPDR: 0.0014-0.0132). Mean posterior probability of variance of second distribution was 0.409 (95%HPDR: 0.286-0.589). The genome-wide association analysis resulted in 14 significant and 43 putative SNP, comprising 7 significant QTL on chromosome 1, 2 and 3 and putative QTL on all chromosomes. Assigning single or multiple QTL to significant SNP was not obvious, especially for SNP in the same region that were more or less in LD. Correlation between the simulated and estimated breeding values of 1,000 offspring without phenotypes was 0.91. Conclusions Bayesian Variable Selection using thousands of SNP was successfully applied to genome-wide association analysis of a simulated dataset with unknown QTL structure. Simulated QTL with Mendelian inheritance were accurately identified, while imprinted and epistatic QTL were only putatively detected. The correlation between simulated and estimated breeding values of offspring without phenotypes was high.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.