Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 433776
Title Potential of mechanical cleaning of membranes from a mebrane bioreactor
Author(s) Brink, P. van den; Vergeldt, F.J.; As, H. van; Zwijnenburg, A.; Temmink, H.
Source Journal of Membrane Science 429 (2013). - ISSN 0376-7388 - p. 259 - 267.
DOI https://doi.org/10.1016/j.memsci.2012.11.061
Department(s) Biophysics
Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) drinking-water - biofilm reactor - critical flux - waste-water - exopolysaccharides - denitrification - precipitation - communities - limitation - bacteria
Abstract Several membrane fouling mechanisms have been identified in membrane bioreactors. While cake layers can be removed by physical cleaning, irreversible fouling such as a gel layer is difficult to remove by physical cleaning during filtration. Harsh mechanical cleaning was applied in this study to evaluate how much fouling could be maximally removed and distribution of remaining fouling was investigated. The fouling resistance of several membranes operated at different relatively low fluxes was followed during long term continuous flux operation. Remaining fouling was observed with scanning electron microscopy (SEM) and magnetic resonance imaging (MRI). Dead-end filtration tests with mechanically cleaned membranes showed a decreased permeability. To determine whether bacteria were present in the remaining fouling, oxygen consumption was quantified. Even after harsh mechanical cleaning, membrane samples showed considerable oxygen consumption. SEM did not show fouling inside the membrane. Of several membranes operated for at least 1 year, the permeate side was covered with bacteria and extracellular polymeric substances (EPS). These results show that fouling cannot be removed completely by harsh mechanical cleaning and that both feed and permeate side of the membrane contains biofouling. This fouling on the permeate side should not be neglected when designing membrane cleaning.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.