Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 435543
Title Protein cluster formation during enzymatic cross-linking of globular proteins
Author(s) Saricay, Y.; Dhayal, S.K.; Wierenga, P.A.; Vries, R.J. de
Source Faraday Discussions 158 (2012). - ISSN 1359-6640 - p. 51 - 63.
Department(s) Physical Chemistry and Colloid Science
Food Chemistry
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) alpha-lactalbumin - beta-lactoglobulin - microbial transglutaminases - aggregation - identification - denaturation - tyrosinase - rheology - state
Abstract Work on enzymatic cross-linking of globular food proteins has mainly focused on food functional effects such as improvements of gelation and enhanced stabilization of emulsions and foams, and on the detailed biochemical characterization of the cross-linking chemistry. What is still lacking is a physical characterization of cluster formation and gelation, as has been done for example, for cluster formation and gelation during heat-induced protein aggregation. Here we present preliminary results along these lines. We propose that enzymatic cross-linking of apo-a-lactalbumin is a good model system for studying the problem of cluster formation and gelation during enzymatic cross-linking of globular proteins. We present initial results on cluster sizes produced when cross-linking dilute solutions of apo-a-lactalbumin with a range of cross-linking enzymes: microbial transglutaminase, horseradish peroxidase, and mushroom tyrosinase. These results are used to highlight similarities and differences between different enzymes, when acting on the same substrate. Next we consider cluster growth and gelation in somewhat more detail for the specific case of cross-linking by horseradish peroxidase, under the periodic addition of H2O2. Upon increasing the initial concentration of apo-a-lactalbumin, at a fixed enzyme-to-substrate ratio and fixed reaction time, the size of the clusters at the end of the reaction increases rapidly, and above a critical concentration, gelation occurs. For the conditions that we have used, gelation occurred at very low initial apo-a-lactalbumin concentrations of 3–4% (w/v), indicating a very dilute cross-linked protein network, with a low average number of cross-links per protein. It is found that reactive protein monomers are first rapidly (1–2 h) incorporated into small covalent clusters. This is followed by a much slower phase (up to about 12 h) in which the small clusters are coupled together to form much larger covalent protein clusters. Consistent with this two-step mechanism, atomic force microscopy shows that the covalent protein clusters are very heterogeneous and seem to consist of smaller subclusters.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.