Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 437914
Title Differentiation of plant age in grasses using remote sensing
Author(s) Knox, N.; Skidmore, A.K.; Werff, H.M.A. van der; Groen, T.A.; Boer, W.F. de; Prins, H.H.T.; Kohi, E.; Peel, M.
Source International Journal of applied Earth Observation and Geoinformation 24 (2013)10. - ISSN 0303-2434 - p. 54 - 62.
DOI https://doi.org/10.1016/j.jag.2013.02.004
Department(s) Wildlife Ecology and Conservation
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) difference water index - monitoring vegetation - nitrogen concentration - imaging spectroscopy - hyperspectral data - boreal regions - time-series - green-up - phenology - reflectance
Abstract Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (An VNIR+ log(An SWIR2))/(An VNIR- log(An SWIR2)), where An VNIRand An SWIR2are the respective nor- malised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.