Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 439543
Title Smoking epidemic eradication in a eco-epidemiological dynamical model
Author(s) Voorn, G.A.K. van; Kooi, B.W.
Source Ecological Complexity 14 (2013). - ISSN 1476-945X - p. 180 - 189.
Department(s) Biometris
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) predator-prey oscillations - policy simulation-model - infectious-diseases - transmission - netherlands - bifurcation - prevalence - invasion
Abstract Smoking is perceived as a major epidemic with regard to mortality. Modelling is a major tool used to obtain insight in the dynamics and possible solutions to decrease or even eradicate this epidemic. Most models on smoking consider the epidemiological context explicitly, in which smoking is regarded as an ‘infectious disease’, in which individuals ‘infect’ each other. However, the population dynamics are often ignored, while these occur at roughly the same timescale as smoking, and hence should explicitly be considered in the modelling of smoking. We present a simple but dynamical eco-epidemiological model. The model formulation consists of a resource-population dynamic part coupled to an epidemiological part resembling a SIR type model for the three compartments: non-smokers, smokers and ex-smokers. The coupling is via birth of non-smokers and death of the three classes with different death rates. The final four-dimensional system of ordinary differential equations are studied using brute force simulations for the short term dynamics and bifurcation analysis for the long-term dynamics. Due to a feed-back mechanism of the two coupling terms there is a codim-two tangent-transcritical bifurcation. This leads to bi-stability of one smoker endemic interior equilibrium and a smoker free boundary equilibrium. Changing parameters beyond the emerging tangent bifurcation leads on the short term to eradicating smoking. We consider the Netherlands in this paper for parametrization, but the modelling approach may be generally applicable.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.