Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 440957
Title Can fisheries-induced evolution shift reference points for fisheries management?
Author(s) Heino, M.; Baulier, L.; Boukal, D.S.; Mollet, F.M.; Rijnsdorp, A.D.
Source ICES Journal of Marine Science 70 (2013)4. - ISSN 1054-3139 - p. 707 - 721.
DOI https://doi.org/10.1093/icesjms/fst077
Department(s) Wageningen Marine Research
Aquaculture and Fisheries
Visserij
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) cod gadus-morhua - north-sea plaice - life-history evolution - exploited fish stocks - pleuronectes-platessa l - eco-genetic model - atlantic cod - population-dynamics - reproductive investment - natural mortality
Abstract Biological reference points are important tools for fisheries management. Reference points are not static, but may change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to “shifting” reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in “true” reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and “precautionary” reference points for spawning-stock biomass, Blim and Bpa, and the target reference point for fishing mortality, F0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamics.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.