Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 441445
Title Biosynthesis of Antinutritional Alkaloids in Solanaceous Crops Is Mediated by Clustered Genes
Author(s) Itkin, M.; Heinig, U.; Tzfadia, O.; Bhide, A.J.; Shinde, B.; Cardenas, P.D.; Bocobza, S.E.; Unger, T.; Malitsky, S.; Finkers, H.J.; Tikunov, Y.M.; Bovy, A.G.; Chikate, Y.; Singh, P.; Rogachev, I.; Beekwilder, J.; Giri, A.P.; Aharoni, A.
Source Science 341 (2013)6142. - ISSN 0036-8075 - p. 175 - 179.
DOI https://doi.org/10.1126/science.1240230
Department(s) Plant Breeding
Plant Breeding
BIOS Applied Metabolic Systems
PRI Bioscience
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) glycoalkaloids - potato - plant - metabolites - pathways - saponins - tomato
Abstract Steroidal glycoalkaloids (SGAs) such as a-solanine found in solanaceous food plants—as, for example, potato—are antinutritional factors for humans. Comparative coexpression analysis between tomato and potato coupled with chemical profiling revealed an array of 10 genes that partake in SGA biosynthesis. We discovered that six of them exist as a cluster on chromosome 7, whereas an additional two are adjacent in a duplicated genomic region on chromosome 12. Following systematic functional analysis, we suggest a revised SGA biosynthetic pathway starting from cholesterol up to the tetrasaccharide moiety linked to the tomato SGA aglycone. Silencing GLYCOALKALOID METABOLISM 4 prevented accumulation of SGAs in potato tubers and tomato fruit. This may provide a means for removal of unsafe, antinutritional substances present in these widely used food crops.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.