Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442227
Title How much CO was emitted by the 2010 fires around Moscow?
Author(s) Krol, M.C.; Peters, W.; Hooghiemstra, P.; George, M.; Clerbaux, C.; Hurtmans, D.; McInerney, D.; Sedano, F.; Bergamaschi, P.; Hajj, M. El; Kaiser, J.W.; Fisher, D.; Yeshov, V.; Muller, J.P.
Source Atmospheric Chemistry and Physics 13 (2013). - ISSN 1680-7316 - p. 4737 - 4747.
DOI https://doi.org/10.5194/acp-13-4737-2013
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) russian wildfires - emissions - pollution - summer - iasi - assimilation - retrieval - satellite - algorithm - transport
Abstract The fires around Moscow in July and August 2010 emitted a large amount of pollutants to the atmosphere. Here we estimate the carbon monoxide (CO) source strength of the Moscow fires in July and August by using the TM5-4DVAR system in combination with CO column observations of the Infrared Atmospheric Sounding Interferometer (IASI). It is shown that the IASI observations provide a strong constraint on the total emissions needed in the model. Irrespective of the prior emissions used, the optimised CO fire emission estimates from mid-July to mid-August 2010 amount to approximately 24 TgCO. This estimate depends only weakly (<15 %) on the assumed diurnal variations and injection height of the emissions. However, the estimated emissions might depend on unaccounted model uncertainties such as vertical transport. Our emission estimate of 22-27 TgCO during roughly one month of intense burning is less than suggested by another recent study, but substantially larger than predicted by the bottom-up inventories. This latter discrepancy suggests that bottom-up emission estimates for extreme peat burning events require improvements.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.