Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442286
Title Quantitative physiology of Lactococcus lactis at extreme low-growth rates
Author(s) Ercan, O.; Smid, E.J.; Kleerebezem, M.
Source Environmental Microbiology 15 (2013)8. - ISSN 1462-2912 - p. 2319 - 2332.
DOI https://doi.org/10.1111/1462-2920.12104
Department(s) Microbiology
Food Microbiology
Host-Microbe Interactomics
VLAG
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) maintenance energy - subsp lactis - streptococcus-cremoris - continuous-culture - product formation - stationary-phase - acid bacteria - carbohydrate starvation - enterococcus-faecalis - stress resistance
Abstract This paper describes the metabolic adaptation of Lactococcus lactis during the transition from a growing to a non-growing state using retentostat cultivation. Under retentostat cultivation, the specific growth rate decreased from 0.025 h-1 to 0.0001 h-1 in 42 days, while doubling time increased to more than 260 days. Viability of the overall culture was maintained above 90% but included approximately 20% damaged cells, which had lost their colony forming capacity on solid media. Although culture biomass and viability had reached a steady-state after 14 days of retentostat cultivation, the morphology of the cells changed from coccus-to-rod shape at later stages of retentostat cultivation, by which the cell’s surface to volume ratio was estimated to increase 2.4-fold. Furthermore, the metabolic patterns switched between homolactic and mixed-acid fermentation during the retentostat cultivation. Retentostat cultivation enabled the calculation of accurate substrate- and energy-related maintenance coefficients and biomass yields under nongrowing conditions, which were in good agreement with those calculated by extrapolation from chemostat cultivations at high dilution rates. In this study, we illustrate how retentostat cultivation allows decoupling of growth and non-growth associated processes in L. lactis, enabling the analysis of quantitative physiological responses of this bacterium to near zero-specific growth rates.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.