Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442960
Title Comparing the social costs of biofuels and fossil fuels: A case study of Vietnam
Author(s) Thanh, L. le; Ierland, E.C. van; Zhu, X.; Wesseler, J.H.H.; Ngo, G.
Source Biomass and Bioenergy 54 (2013). - ISSN 0961-9534 - p. 227 - 238.
DOI https://doi.org/10.1016/j.biombioe.2013.04.004
Department(s) Environmental Economics and Natural Resources
WASS
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) diesel-engine - methyl-ester - performance - emissions - biodiesel - blends - combustion
Abstract Biofuel substitution for fossil fuels has been recommended in the literature and promoted in many countries; however, there are concerns about its economic viability. In this paper we focus on the cost-effectiveness of fuels, i.e., we compare the social costs of biofuels and fossil fuels for a functional unit defined as 1 km of vehicle transportation. We base our empirical results on a case study in Vietnam and compare two biofuels and their alternative fossil fuels: ethanol and gasoline, and biodiesel and diesel with a focus on the blends of E5 and E10 for ethanol, and B5 and B10 for biodiesel. At the discount rate of 4%, ethanol substitution for gasoline in form of E5 or E10 saves 33% of the social cost of gasoline if the fuel consumption of E5 and E10 is the same as gasoline. The ethanol substitution will be cost-effective if the fuel consumption of E5 and E10, in terms of L km-1, is not exceeding the consumption of gasoline by more than 1.7% and 3.5% for E5 and E10 respectively. The biodiesel substitution would be cost-effective if the fuel consumption of B5 and B10, in terms of L km-1 compared to diesel, would decrease by more than 1.4% and 2.8% for B5 and B10 respectively at the discount rate of 4%.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.