Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 443291
Title System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato
Author(s) Etalo, D.W.; Stulemeijer, I.J.E.; Esse, H.P. van; Vos, R.C.H. de; Bouwmeester, H.J.; Joosten, M.H.A.J.
Source Plant Physiology 162 (2013)3. - ISSN 0032-0889 - p. 1599 - 1617.
DOI https://doi.org/10.1104/pp.113.217471
Department(s) Laboratory of Plant Physiology
BIOS Applied Metabolic Systems
Laboratory of Phytopathology
EPS-2
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) programmed cell-death - pathogen pseudomonas-syringae - campestris pv. vesicatoria - glutathione s-transferases - amino-acid catabolism - leaf rust resistance - higher-plant cells - mass-spectrometry - cladosporium-fulvum - functional-analysis
Abstract The hypersensitive response (HR) is considered to be the hallmark of the resistance response of plants to pathogens. To study HR-associated transcriptome and metabolome reprogramming in tomato (Solanum lycopersicum), we used plants that express both a resistance gene to Cladosporium fulvum and the matching avirulence gene of this pathogen. In these plants, massive reprogramming occurred, and we found that the HR and associated processes are highly energy demanding. Ubiquitin-dependent protein degradation, hydrolysis of sugars, and lipid catabolism are used as alternative sources of amino acids, energy, and carbon skeletons, respectively. We observed strong accumulation of secondary metabolites, such as hydroxycinnamic acid amides. Coregulated expression of WRKY transcription factors and genes known to be involved in the HR, in addition to a strong enrichment of the W-box WRKY-binding motif in the promoter sequences of the coregulated genes, point to WRKYs as the most prominent orchestrators of the HR. Our study has revealed several novel HR-related genes, and reverse genetics tools will allow us to understand the role of each individual component in the HR.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.