Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 445023
Title Trait estimation in herbaceous plant assemblages from in situ canopy spectra
Author(s) Roelofsen, H.D.; Bodegom, P.M. van; Kooistra, L.; Witte, J.M.
Source Remote Sensing 5 (2013)12. - ISSN 2072-4292 - p. 6323 - 6345.
DOI https://doi.org/10.3390/rs5126323
Department(s) Laboratory of Geo-information Science and Remote Sensing
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) least-squares regression - hyperspectral data - economics spectrum - vegetation indexes - indicator values - nitrogen-content - national-park - chlorophyll - reflectance - model
Abstract Estimating plant traits in herbaceous plant assemblages from spectral reflectance data requires aggregation of small scale trait variations to a canopy mean value that is ecologically meaningful and corresponds to the trait content that affects the canopy spectral signal. We investigated estimation capacities of plant traits in a herbaceous setting and how different trait-aggregation methods influence estimation accuracies. Canopy reflectance of 40 herbaceous plant assemblages was measured in situ and biomass was analysed for N, P and C concentration, chlorophyll, lignin, phenol, tannin and specific water concentration, expressed on a mass basis (mg·g-1). Using Specific Leaf Area (SLA) and Leaf Area Index (LAI), traits were aggregated to two additional expressions: mass per leaf surface (mg·m-2) and mass per canopy surface (mg·m-2). All traits were related to reflectance using partial least squares regression. Accuracy of trait estimation varied between traits but was mainly influenced by the trait expression. Chlorophyll and traits expressed on canopy surface were least accurately estimated. Results are attributed to damping or enhancement of the trait signal upon conversion from mass based trait values to leaf and canopy surface expressions. A priori determination of the most appropriate trait expression is viable by considering plant growing strategies
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.