Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 445832
Title The Effect of a New Calibration Procedure on the Measurement Accuracy of Scintec's Displaced-Beam Laser Scintillometer
Author(s) Kesteren, A.J.H. van; Hartogensis, O.K.; Kroonenberg, A.C. van den
Source Boundary-Layer Meteorology 151 (2014)2. - ISSN 0006-8314 - p. 257 - 271.
DOI https://doi.org/10.1007/s10546-013-9891-1
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) atmospheric surface-layer - stable boundary-layer - optical scintillation - inner scale - structure parameter - flux measurements - refractive-index - sensible heat - turbulence - spectrum
Abstract We describe a new calibration procedure included in the production process of Scintec’s displaced-beam laser scintillometers (SLS-20/40) and its effect on their measurement accuracy. The calibration procedure determines the factual displacement distances of the laser beams at the receiver and transmitter units, instead of assuming a prescribed displacement distance of 2.70 mm. For this study, four scintillometers operated by Wageningen University and the German Meteorological Service were calibrated by Scintec and their data re-analyzed. The results show that significant discrepancies may exist between the factual and the prescribed displacement distances. Generally, the factual displacement is about 0.1 mm smaller than 2.70 mm, but extremes varied between 0.04 and 0.24 mm. Correspondingly, using non-calibrated scintillometers may result in biases as large as 20 % in the estimates of the inner-scale length, l0, the structure parameter of the refractive index, Cn2, and the friction velocity, u*. The bias in the sensible heat flux was negligible, because biases in Cn2 and u* cancel. Hence, the discrepancies explain much of the long observed underestimations of u * determined by these scintillometers. Furthermore, the calibration improves the mutual agreement between the scintillometers for l 0 , but especially for Cn2. Finally, it is noted that the measurement specifications of the scintillometer do not expire and hence the results of the calibration can be applied retroactively
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.