Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 448235
Title Estimating crop-specific evapotranspiration using remote-sensing imagery at various spatial resolutions for improving crop growth modelling
Author(s) Sepulcre-Canto, G.; Gellens-Meulenberghs, F.; Arboleda, A.; Duveiller, G.; Wit, A.J.W. de; Eerens, H.; Djaby, B.; Defourny, P.
Source International Journal of Remote Sensing 34 (2013)9-10. - ISSN 0143-1161 - p. 3274 - 3288.
DOI https://doi.org/10.1080/01431161.2012.716911
Department(s) Earth Observation and Environmental Informatics
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) soil-moisture - index - china
Abstract By governing water transfer between vegetation and atmosphere, evapotranspiration (ET) can have a strong influence on crop yields. An estimation of ET from remote sensing is proposed by the EUMETSAT ‘Satellite Application Facility’ (SAF) on Land Surface Analysis (LSA). This ET product is obtained operationally every 30 min using a simplified SVAT scheme that uses, as input, a combination of remotely sensed data and atmospheric model outputs. The standard operational mode uses other LSA-SAF products coming from SEVIRI imagery (the albedo, the downwelling surface shortwave flux, and the downwelling surface longwave flux), meteorological data, and the ECOCLIMAP database to identify and characterize the land cover. With the overall objective of adapting this ET product to crop growth monitoring necessities, this study focused first on improving the ET product by integrating crop-specific information from high and medium spatial resolution remote-sensing data. A Landsat (30 m)-based crop type classification is used to identify areas where the target crop, winter wheat, is located and where crop-specific Moderate Resolution Imaging Spectroradiometer (MODIS) (250 m) time series of green area index (GAI) can be extracted. The SVAT model was run for 1 year (2007) over a study area covering Belgium and part of France using this supplementary information. Results were compared to those obtained using the standard operational mode. ET results were also compared with ground truth data measured in an eddy covariance station. Furthermore, transpiration and potential transpiration maps were retrieved and compared with those produced using the Crop Growth Monitoring System (CGMS), which is run operationally by the European Commission's Joint Research Centre to produce in-season forecast of major European crops. The potential of using ET obtained from remote sensing to improve crop growth modelling in such a framework is studied and discussed. Finally, the use of the ET product is also explored by integrating it in a simpler modelling approach based on light-use efficiency. The Carnegie–Ames–Stanford Approach (CASA) agroecosystem model was therefore applied to obtain net primary production, dry matter productivity, and crop yield using only LSA-SAF products. The values of yield were compared with those obtained using CGMS, and the dry matter productivity values with those produced at the Flemish Institute for Technological Research (VITO). Results showed the potential of using this simplified remote-sensing method for crop monitoring
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.