Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 451537
Title Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus
Author(s) Lin, K.; Limpens, E.H.M.; Zhang, Z.; Ivanov, S.; Saunders, D.G.O.; Mu, D.; Pang, E.; Cao, H.; Cha, H.; Lin, T.; Zhou, Q.; Shang, Y.; Li, Y.; Sharma, T.C.; Velzen, R. van; Ruijter, N.C.A. de; Aanen, D.K.; Win, J.; Kamoun, S.; Bisseling, T.; Geurts, R.; Huang, S.W.
Source Plos Genetics 10 (2014)1. - ISSN 1553-7404 - 13 p.
DOI https://doi.org/10.1371/journal.pgen.1004078
Department(s) Laboratory of Molecular Biology
Laboratory of Cell Biology
Laboratory of Genetics
EPS-1
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) arbuscular mycorrhizal fungi - pathogen phytophthora-infestans - glomus-intraradices - sexual reproduction - protein families - cdna sequences - kingdom fungi - gene - identification - efficient
Abstract Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.