Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 453707
Title Improved poliovirus d-antigen yields by application of different Vero cell cultivation methods
Author(s) Thomassen, Y.E.; Rubingh, O.; Wijffels, R.H.; Pol, L.A. van der
Source Vaccine 32 (2014)24. - ISSN 0264-410X - p. 2782 - 2788.
DOI https://doi.org/10.1016/j.vaccine.2014.02.022
Department(s) Bioprocess Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) culture process - rabies virus - vaccine - microcarrier - replication - inhibition - bioreactor - metabolism - growth
Abstract Vero cells were grown adherent to microcarriers (Cytodex 1; 3 g L-1) using animal component free media in stirred-tank type bioreactors. Different strategies for media refreshment, daily media replacement (semi-batch), continuous media replacement (perfusion) and recirculation of media, were compared with batch cultivation. Cell densities increased using a feed strategy from 1 × 106 cells mL-1 during batch cultivation to 1.8, 2.7 and 5.0 × 106 cells mL-1 during semi-batch, perfusion and recirculation, respectively. The effects of these different cell culture strategies on subsequent poliovirus production were investigated. Increased cell densities allowed up to 3 times higher d-antigen levels when compared with that obtained from batch-wise Vero cell culture. However, the cell specific d-antigen production was lower when cells were infected at higher cell densities. This cell density effect is in good agreement with observations for different cell lines and virus types. From the evaluated alternative culture methods, application of a semi-batch mode of operations allowed the highest cell specific d-antigen production. The increased product yields that can easily be reached using these higher cell density cultivation methods, showed the possibility for better use of bioreactor capacity for the manufacturing of polio vaccines to ultimately reduce vaccine cost per dose. Further, the use of animal-component-free cell- and virus culture media shows opportunities for modernization of human viral vaccine manufacturing.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.