Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 454159
Title the role of soluble and insoluble fibers during fermentation of Chicory root pulp
Author(s) Ramasamy, U.
Source Wageningen University. Promotor(en): Harry Gruppen; Henk Schols. - Wageningen : Wageningen University - ISBN 9789461739650 - 152
Department(s) Food Chemistry
VLAG
Publication type Dissertation, internally prepared
Publication year 2014
Keyword(s) cichorei - pulp - vezels - fermentatie - celwandstoffen - polysacchariden - chicory - pulps - fibres - fermentation - cell wall components - polysaccharides
Categories Chemistry of Food Components
Abstract

This thesis was aimed at understanding the in vitro fermentability of soluble and insoluble fibers in chicory root pulp (CRP). First, CRP and ensiled chicory root pulp (ECRP) were characterized for cell wall polysaccharides (CWPs). Both CRP and ECRP were rich in CWPs (56-58 w/w (%)) and had rather similar sugar compositions. The CWPs consist of 62 % pectin, 11% hemicellulose and 27% cellulose. Pectin and xyloglucan were acetylated and the rhamnogalacturonan-I segments of pectin were branched mostly with arabinan. Compared to CRP, ECRP has four times more soluble pectin.

In vitrofermentability in a batch model for 24 h using human faecal inoculum, showed that fibers in both CRP (51% carbohydrate utilisation) and ECRP (59% carbohydrate utilisation) were fermentable, especially pectin (80-87%). The increased levels of soluble pectin (arabinan, homogalacturonan and galactan) and the hypothesized open cell wall structure in ECRP contributed to a quicker fermentation and a higher level of carbohydrate utilization compared to CRP. In contrast to batch fermentation, fermentation in the dynamic TNO In vitro model of the colon (TIM-2) was rapid (57% carbohydrate utilisation in 2 h). ECRP carbohydrates (85%) were less fermented in 24 h compared to CRP carbohydrates (92%) due to lower utilisation of ECRP insoluble fibers than CRP insoluble fibers. It was hypothesized that soluble fibers that are readily fermentable and dominantly present in ECRP, programmed the microbiota in TIM-2 to fully adapt to these soluble fibers. After their utilization, the microbiota was not able to adapt towards the fermentation of insoluble fibers.

Analysis of enzyme activities during batch fermentation of CRP showed increased levels of arabinofuranosidase, β-galactosidase, endo-arabinanase, endo-galactanase, exo-polygalacturonase, pectin de-esterifying enzymes and endo-polygalacturonase. They synergistically contributed to degrading pectin in CRP from 12 to 24 h of fermentation.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.