Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 455424
Title Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study
Author(s) Mulders, K.J.M.; Weesepoel, Y.J.A.; Bodenes, C.; Lamers, P.P.; Vincken, J.P.; Martens, D.E.; Gruppen, H.; Wijffels, R.H.
Source Journal of Applied Phycology 27 (2015)1. - ISSN 0921-8971 - p. 125 - 140.
DOI https://doi.org/10.1007/s10811-014-0333-3
Department(s) Bioprocess Engineering
Food Chemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) alga haematococcus-pluvialis - green-alga - triacylglycerol accumulation - biosynthetic-pathway - dunaliella-salina - light - chlorophyceae - inhibition - microalgae - complex
Abstract Natural carotenoids such as astaxanthin, ß,ß-carotene and lutein are pigments with a high market value. We studied the effects of nitrogen depletion on the carotenoid metabolism of Chlorella zofingiensis (Chlorophyta) and the subsequent treatment with diphenylamine (DPA), an inhibitor of the biosynthesis of secondary ketocarotenoids. Pigments were identified and quantified based on reversed phase ultrahigh performance liquid chromatography photodiode array tandem mass spectrometry (RP-UHPLC-PDA-MSn). Nitrogen depletion (without DPA) resulted in a degradation of chlorophylls and primary carotenoids and an accumulation of astaxanthin, ketolutein, canthaxanthin, adonixanthin and ß,ß-carotene. The DPA treatment decreased the overall production of ß,ß-carotene derivatives (sum of astaxanthin, canthaxanthin, echinenone and adonixanthin); however, the production of ketolutein and degradation of primary carotenoids were not modified. This suggests that the regulatory mechanisms controlling the flux towards ketolutein and primary carotenoids were not affected by the decreased levels of ß,ß-carotene derivatives. In addition, DPA increased production of the individual carotenoids, adonixanthin and echinenone. Insight into the regulation of microalgal carotenoid biosynthesis as demonstrated in this paper is essential when a large-scale carotenoid production process is to be optimised or a recombinant C. ofingiensis strain is to be designed with the intention of excessively producing primary or secondary carotenoids.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.