Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 455463
Title Evaluation of the Effect of Agricultural Management on Energy Yield and Greenhouse Gas Emission Reduction of Bioenergy Production Chains
Author(s) Conijn, S.; Corre, W.J.; Langeveld, H.; Davies, J.A.R.
Source Natural Resources 5 (2014). - ISSN 2158-7086 - p. 322 - 335.
DOI https://doi.org/10.4236/nr.2014.57030
Department(s) Agro Water- en Biobased Economy
Agro Toegepaste Plantenecologie
Publication type Refereed Article in a scientific journal
Publication year 2014
Abstract The role of energy crops in reducing fossil energy use and greenhouse gas emission is much debated. To improve decision making on the use of crops for producing bioenergy, a tool (Energy Crop Simulation Model or E-CROP) has been developed to calculate 1) sustainable crop dry matter yield levels as function of agricultural inputs, and 2) gross and net energy yield and greenhouse gas emission reduction, covering the entire bioenergy production chain from sowing to distribution of bioenergy. E-CROP can be applied to a wide range of crops, soils, climatic conditions, management choices, and conversion technologies. This paper describes E-CROP and focuses on its application on four arable crops, as cultivated on two contrasting sites in the Netherlands (potato and sugar beet for bioethanol, winter oilseed rape for biodiesel and silage maize for bioelectricity) and on the effect of crop management (viz. irrigation and nitrogen fertilisation). In all situations, gross energy output exceeded total energy input. Calculated for an average situation, net energy yield ranged from 45 to 140 GJ·ha-1. Lowering irrigation and/or fertilisation input levels generally resulted in a reduction of net energy yields. The net reduction of greenhouse gas emissions in the average situation ranged from 0.60 to 6.5 t CO2-eq·ha-1. In general, N2O emission from nitrogen fertiliser caused large variations in the net reduction of greenhouse gas emission, which even became negative in some situations. Lowering nitrogen fertilisation to levels that are suboptimal for net energy yields enhanced the net reduction in greenhouse gas emission, implicating that both goals cannot be optimised simultaneously. Agricultural knowledge is important for optimising the outputs of bioenergy production chains.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.