Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 455535
Title Production-ecological modelling explains the difference between potential soil N mineralisation and actual herbage N uptake
Author(s) Rashid, M.I.; Goede, R.G.M. de; Brussaard, L.; Bloem, J.; Lantinga, E.A.
Source Applied Soil Ecology 84 (2014). - ISSN 0929-1393 - p. 83 - 92.
DOI https://doi.org/10.1016/j.apsoil.2014.07.002
Department(s) Farming Systems Ecology
Soil Biology
Animal Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) winter-wheat fields - nitrogen mineralization - organic-matter - food webs - grassland soils - forest soils - community - manure - earthworms - management
Abstract We studied two different grassland fertiliser management regimes on sand and peat soils: above-ground application of a combination of organic N-rich slurry manure and solid cattle manure (SCM) vs. slit-injected, mineral N-rich slurry manure, whether or not supplemented with chemical fertiliser (non-SCM). Measurements of field N mineralisation as estimated from herbage N uptake in unfertilised plots were compared with (i) potential N mineralisation as determined from a standard laboratory soil incubation, (ii) the contribution of groups of soil organisms to N mineralisation based on production-ecological model calculations, and (iii) N mineralisation calculated according to the Dutch fertilisation recommendation for grasslands. Density and biomass of soil biota (bacteria, fungi, enchytraeids, microarthropods and earthworms) as well as net plant N-uptake were higher in the SCM input grasslands compared to the non-SCM input grasslands. The currently used method in Dutch fertilisation recommendations underestimated actual soil N supply capacity by, on average, 102 kg N ha-1 (202 vs. 304 kg ha-1 = 34%). The summed production-ecological model estimate for N mineralisation by bacteria, fungi, protozoa, and enchytraeids was 87–120% of the measured potential soil N mineralisation. Adding the modelled N mineralisation by earthworms to potential soil N mineralisation explained 98–107% of the measured herbage N uptake from soil. For all grasslands and soil biota groups together, the model estimated 105% of the measured net herbage N uptake from soil. Soil biota production-ecological modelling is a powerful tool to understand and predict N uptake in grassland, reflecting the effects of previous manure management and soil type. The results show that combining production ecological modelling to predict N supply with existing soil N tests using aerobic incubation methods, can add to a scientifically based improvement of the N fertilisation recommendations for production grasslands.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.