Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 456612
Title Regeneration and transformation of Crambe abyssinica
Author(s) Qi, W.; Tinnenbroek-Capel, I.E.M.; Schaart, J.; Huang Bangquan, ; Cheng, J.; Visser, R.G.F.; Loo, E.N. van; Krens, F.A.
Source BMC Plant Biology 14 (2014). - ISSN 1471-2229 - 12 p.
DOI https://doi.org/10.1186/s12870-014-0235-1
Department(s) Plant Breeding
Plant Breeding
PPO Paddestoelen
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) gene - agrobacterium - tissue - plants
Abstract Background: Crambe abyssinica (crambe) is a non-food oil seed crop. Its seed oil is widely used in the chemical industry because of the high erucic acid content. Furthermore, it is a potential platform for various feedstock oils for industrial uses based on genetic modification. Here, we describe the development of a series of protocols for all steps required in the process of generating genetically modified crambe. Results: Different explant types from crambe seedlings were tested for shoot regeneration using different hormone-combinations. Cotyledonary nodes on basic medium with 0.5 µM NAA and 2.2 µM BAP gave the highest regeneration percentages. For propagation by tissue culture, explants of stems, petioles, leaves and axillary buds of in vitro plantlets were tested using the optimized medium. Axillary buds showed the highest shoot proliferation efficiency. Cotyledonary nodes were used to test the proper concentration of kanamycin for selection of transformation events, and 10 to 25 mg · L-1 were identified as effective. The cotyledonary nodes and cotyledons from 7-day-old seedlings were used in Agrobacterium-mediated transformations with two kinds of selection strategies, shifting or consistent. Using the shifting selection method (10 mg · L-1 kanamycin, 25 mg · L-1, then back to 10 mg · L-1) cotyledonary nodes gave 10% transformation frequency, and cotyledons 4%, while with the consistent method (25 mg · L-1) lower frequencies were found, 1% for cotyledonary nodes and 0% for cotyledons). Later, in vitro plant axillary buds were tried as explants for transformation, however, transformation frequency was low ranging from 0.5 to 2%. Overall, testing six different vectors and two kinds of Agrobacterium strains, the average transformation frequency using the shifting method was 4.4%. Determining T-DNA insertion numbers by Southern blotting showed that approximately 50% of the transgenic lines had a single-copy insertion. Conclusions: Present research revealed the potential of using crambe meristematic tissue for genetic transformation andin vitro propagation. The most efficient method of transformation used cotyledonary node explants from 7-days-old seedlings with a shifting kanamycin selection. Meristematic tissues (cotyledonary node or axillary bud) had the highest ability for shoot proliferation. Single-copy T-DNA insert lines could be efficiently and reproducibly generated.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.