Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 456905
Title Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae
Author(s) Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, A.R. van der; Bouwmeester, H.J.; Beekwilder, M.J.
Source Yeast 32 (2015)1. - ISSN 0749-503X - p. 159 - 171.
DOI https://doi.org/10.1002/yea.3038
Department(s) Laboratory of Plant Physiology
BIOS Applied Metabolic Systems
EPS
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) monoterpene biosynthesis - escherichia-coli - synthase - precursor
Abstract Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028¿mg/l (+)-limonene and 0.060¿mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12¿mg/l (+)-limonene and 0.49¿mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Gene Bank Nos were: KM015220 (Perilla limonene synthase; this study); AF317695 (Perilla limonene synthase; Yuba et al., 1996); AF514287.1 (Citrus limonene synthase; Lucker et al., 2002).
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.