Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 456958
Title Rehydration kinetics of freeze-dried carrots
Author(s) Vergeldt, F.J.; Dalen, G. van; Duijster, A.J.; Voda, A.; Khalloufi, S.; Vliet, L.J. van; As, H. van; Duynhoven, J.P.M. van; Sman, R.G.M. van der
Source Innovative Food Science and Emerging Technologies 24 (2014). - ISSN 1466-8564 - p. 40 - 47.
DOI https://doi.org/10.1016/j.ifset.2013.12.002
Department(s) Biophysics
Food Process Engineering
Food Technology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) fruits - foods - microstructure - vegetables - quality - impact - nmr
Abstract Rehydration kinetics by two modes of imbibition is studied in pieces of freeze-dried winter carrot, after different thermal pre-treatments. Water ingress at room temperature is measured in real time by in situ MRI and NMR relaxometry. Blanched samples rehydrate substantially faster compared to non-blanched samples, independent of their porous microstructure. It is proposed that for non-blanched tissues immobilized sugars result in nearly complete swelling of the solid matrix, hindering the ingress of water through the porous network. Nonblanched carrot pieces frozen at-28 °C rehydrate faster compared to those frozen at-150 °C, due to blocking of smaller pores by swelling. In blanched tissues themobilization of sugars results in amore homogeneous Sugar distribution, leading to less swelling of the solid matrix and allowing fast ingress of water via capillary suction. Industrial relevance: The dried fruits and vegetables that are currently available on the market are a poor compromise between convenience (rehydration kinetics) and sensorial quality. This is a major bottleneck for consumers to “Make the Healthy Choice the Easy Choice” and this also negatively impacts market growth. Currently, rational optimization of drying processes is impeded by lack of insight which structural features determine rehydration kinetics (convenience) and texture (sensorial quality) upon rehydration. We therefore started a program to quantitatively assess and model microstructural features and rehydration behavior of freeze-dried carrots as a model system.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.