Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 477049
Title Factors Impeding Enzymatic Wheat Gluten Hydrolysis at High Solid Concentrations
Author(s) Hardt, N.A.; Janssen, A.E.M.; Boom, R.M.; Goot, A.J. van der
Source Biotechnology and Bioengineering 111 (2014)7. - ISSN 0006-3592 - p. 1304 - 1312.
DOI https://doi.org/10.1002/bit.25197
Department(s) Food Process Engineering
Onderwijsinstituut
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) functional-properties - water activity - plastein synthesis - biomass - lignocellulose - inhibition - proteins - softwood
Abstract Enzymatic wheat gluten hydrolysis at high solid concentrations is advantageous from an environmental and economic point of view. However, increased wheat gluten concentrations result in a concentration effect with a decreased hydrolysis rate at constant enzyme-to-substrate ratios and a decreased maximum attainable degree of hydrolysis (DH%). We here identified the underlying factors causing the concentration effect. Wheat gluten was hydrolyzed at solid concentrations from 4.4% to 70%. The decreased hydrolysis rate was present at all solid concentrations and at any time of the reaction. Mass transfer limitations, enzyme inhibition and water activity were shown to not cause this hydrolysis rate limitation up to 50% solids. However, the hydrolysis rate limitation can be, at least partly, explained by a second-order enzyme inactivation process. Furthermore, mass transfer impeded the hydrolysis above 60% solids. Addition of enzyme after 24 h at high solid concentrations scarcely increased the DH%, suggesting that the maximum attainable DH% decreases at high solid concentrations. Reduced enzyme activities caused by low water activities can explain this DH% limitation. Finally, a possible influence of the plastein reaction on the DH% limitation is discussed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.