Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 477432
Title Functional Identification of Conserved Residues Involved in Lactobacillus rhamnosus Strain GG Sortase Specificity and Pilus Biogenesis
Author(s) Douillard, F.P.; Rasinkangas, P.; Ossowski, I. von; Reunanen, J.; Palva, A.; Vos, W.M. de
Source Journal of Biological Chemistry 289 (2014)22. - ISSN 0021-9258 - p. 15764 - 15775.
DOI https://doi.org/10.1074/jbc.M113.542332
Department(s) Microbiology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) complete genome sequence - gram-positive bacteria - enterococcus-faecium isolate - group-b streptococcus - lactic-acid bacteria - lactococcus-lactis - corynebacterium-diphtheriae - bacillus-anthracis - pilin subunit - reveals pili
Abstract In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.