Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 477699
Title Influence of water availability on the enzymatic hydrolysis of proteins
Author(s) Butré, C.I.; Wierenga, P.A.; Gruppen, H.
Source Process Biochemistry 49 (2014)11. - ISSN 1359-5113 - p. 1903 - 1912.
DOI https://doi.org/10.1016/j.procbio.2014.08.009
Department(s) Food Chemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) substrate-inhibition - functional-properties - ionic-strength - amino-acid - hydration - nmr - macromolecules - mechanism - kinetics - protease
Abstract The overall rate of enzymatic protein hydrolysis decreases with increasing protein concentration (0.1–30% (w/v)) at constant enzyme/substrate ratio. To understand the role of water, the amount of available water was expressed as the ratio between free and bound water and experimentally determined from water activity and T2 relaxation time (NMR) measurements. At low protein concentrations a large excess of water is present (1.5 × 106 water molecules per protein molecule at 0.1% (w/v) whey protein isolate (WPI), but only 3984 at 30% (w/v) WPI. Assuming that 357 molecules of water are needed for full hydration of the protein, these values correspond to a 4280 and 11 times excess of water, showing that at 30% (w/v) WPI the amount of water becomes limited. At the same time, only a small decrease was observed in water activity (1.00–0.997 for 0.1–30% (w/v) WPI), and an increase of bound water measured by NMR (
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.